Materie-Antimaterie-Symmetrie und "Antimaterie-Uhr" gleichzeitig getestet

BASE-Kollaboration setzt neue Maßstäbe / Arbeitsgruppe am Exzellenzcluster PRISMA+ der Johannes Gutenberg-Universität Mainz an Publikation in Nature beteiligt

10.01.2022

PRESSEMITTEILUNG DER BASE-KOLLABORATION

Die BASE-Kollaboration am CERN berichtet in der Fachzeitschrift Nature über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch. Diese neue Messung verbessert die Genauigkeit des bisher besten Werts um mehr als den Faktor vier. Der über einen Zeitraum von eineinhalb Jahren gesammelte Datensatz ermöglicht außerdem einen Test des schwachen Äquivalenzprinzips, nach dem sich Materie und Antimaterie unter Schwerkraft gleich verhalten.

Symmetrie und Schönheit sind eng miteinander verbunden, nicht nur in der Musik, der Kunst und der Architektur, sondern auch in den grundlegenden physikalischen Gesetzen, die unser Universum beschreiben. Es ist in gewisser Weise ironisch, dass wir unsere Existenz einer gebrochenen Symmetrie in der derzeit besten fundamentalen Theorie, dem Standardmodell (SM) der Teilchenphysik, zu verdanken scheinen. Einer der Eckpfeiler des SM ist die Invarianz bei Umkehr von Ladung, Parität und Zeit (CPT). Auf die Gleichungen des SM angewandt, verwandelt die CPT-Transformation Materie in Antimaterie. Als Folge der CPT-Symmetrie haben Paare von Materie und Antimaterie die gleichen Massen, Ladungen und magnetischen Momente, die beiden letzteren mit entgegengesetztem Vorzeichen. Eine weitere Folge von CPT: Trifft ein Teilchen auf sein Antiteilchen, vernichten sie sich zu reiner Energie, was in zahlreichen Laborexperimenten bestätigt wurde. In diesem Sinne ist die Existenz unseres Universums keineswegs selbstverständlich: Es besteht Grund zur Annahme, dass beim Urknall Materie und Antimaterie in gleichen Mengen entstanden sind. Warum nur die Materie übrig blieb, aus der unser Sonnensystem und die Himmelskörper im Universum bestehen, ist noch ungeklärt.

Ein weiteres heißes Thema in der modernen Physik ist die Frage, ob sich Materie und Antimaterie unter Schwerkraft gleich verhalten. In ihrem neuen Artikel vergleichen die BASE-Wissenschaftler die Ladung-zu-Masse-Verhältnisse von Antiprotonen und Protonen sowie – während des Umlaufs der Erde um die Sonne – die Ähnlichkeit von Uhren aus Antimaterie und Materie. Sie sind also beiden Fragen gleichzeitig mit einer Messung nachgegangen.

Haben Proton und Antiproton wirklich die gleiche Masse?

Für seine hochpräzisen Untersuchungen verwendete das Team um Dr. Stefan Ulmer, leitender Wissenschaftler am RIKEN in Japan und Sprecher der BASE-Kollaboration, eine Penningfalle, also einen elektromagnetischen Behälter, der ein einzelnes geladenes Teilchen speichern und nachweisen kann. Ein Teilchen in einer solchen Falle schwingt mit einer charakteristischen Frequenz, die durch seine Masse definiert ist. Das "Abhören" der Schwingungsfrequenzen von Antiprotonen und Protonen in derselben Falle ermöglicht es, deren Massen zu vergleichen. "Durch Beladen eines zylindrischen Stapels mehrerer solcher Penningfallen mit Antiprotonen und negativen Wasserstoffionen konnten wir einen Massenvergleich innerhalb von nur vier Minuten durchführen, also 50 Mal schneller als bei früheren Proton-Antiproton-Vergleichen anderer Gruppen", erläutert Ulmer. "Seit unseren früheren Messungen haben wir außerdem den Versuchsaufbau technisch erheblich verbessert. Dies erhöht die Stabilität des Experiments und verringert systematische Verschiebungen in den Messwerten." Mit diesem optimierten Instrument hat das BASE-Team im Verlauf von eineinhalb Jahren einen Datensatz von rund 24.000 einzelnen Frequenzvergleichen erfasst. Durch Kombination aller Messergebnisse fanden die Forscher, dass das Ladung-zu-Masse-Verhältnis von Antiprotonen und Protonen identisch ist und zwar mit einer Genauigkeit von 16 Teilen in einer Billion, also einer Zahl mit elf signifikanten Stellen. Das verbessert die Genauigkeit der bisher besten Messung – ebenfalls von BASE – um mehr als den Faktor vier, was einen erheblichen Fortschritt in der Präzisionsphysik bedeutet.

Wie kommt hier die Schwerkraft ins Spiel?

Ein Teilchen, das in einer Penningfalle schwingt, kann man als "Uhr" betrachten, ein Antiteilchen als "Anti-Uhr". Bei starker Gravitation gehen die Uhren schneller. Während der Langzeitmessung von eineinhalb Jahren war die Erde auf ihrer elliptischen Bahn unterschiedlich starker Anziehungskraft der Sonne ausgesetzt. Falls Antimaterie und Materie verschieden auf Schwerkraft reagieren, würden die Materie- und Antimaterie-Uhren entlang der Flugbahn der Erde unterschiedliche Frequenzverschiebungen erfahren. Die BASE-Wissenschaftler konnten bei der Analyse ihrer Daten aber keine derartige Frequenzanomalie feststellen. So konnten sie erstmals direkte und weitgehend modellunabhängige Grenzen für ein anomales Verhalten von Antimaterie unter Schwerkraft setzen – oder anders ausgedrückt: Sie konnten im Rahmen der Messgenauigkeit die Gültigkeit des schwachen Äquivalenzprinzips für Uhren bestätigen.

"Um mit noch höherer Präzision messen zu können, müssen wir die Antiprotonen aus der Beschleunigerumgebung der Antimaterie-Fabrik des CERN in ein ruhiges Labor bringen", beschreibt Dr. Christian Smorra, Physiker am Exzellenzcluster PRISMA+ der JGU und stellvertretender Sprecher der BASE-Kollaboration, die nächsten Schritte. "Dazu konstruiert das BASE-Team derzeit die transportable Antiprotonenfalle BASE-STEP." Zunächst ist geplant, die Antiprotonen in ein ruhiges Labor am CERN zu verlagern. Wenn das geklappt hat, können die Antiprotonen auch an andere Fallenlabore verteilt werden. "Wir werden die Transportfalle nutzen, um noch genauere Messungen mit Antiprotonen zu machen. So wollen wir sicherstellen, dass uns bei den Antiteilchen keine neue Physik durch die Lappen geht."

Die BASE-Kollaboration besteht aus Wissenschaftlerinnen und Wissenschaftlern des RIKEN Fundamental Symmetries Laboratory, des European Center for Nuclear Research (CERN), des Max-Planck-Instituts für Kernphysik in Heidelberg, der Johannes Gutenberg-Universität Mainz (JGU), des Helmholtz-Instituts Mainz (HIM), der Universität Tokio, des GSI Helmholtzzentrums für Schwerionenforschung Darmstadt, der Leibniz-Universität Hannover, der Physikalisch-Technischen Bundesanstalt (PTB) Braunschweig und der ETH Zürich. Die vorliegende Arbeit wurde im Rahmen des Max-Planck-RIKEN-PTB Center for Time, Constants and Fundamental Symmetries durchgeführt.