Detaillierte Vermessung der optischen Anregung von Energieniveaus in der Atomhülle von drei Isotopen des schweren synthetischen Elements 102
27.06.2018
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich. Laserspektroskopie ist eine etablierte Technik, um solche Eigenschaften exotischer Atomkerne zu untersuchen. Einem internationalen Team von Wissenschaftlerinnen und Wissenschaftlern des GSI Helmholtzzentrums für Schwerionenforschung, der Johannes Gutenberg-Universität Mainz (JGU), des Helmholtz-Instituts Mainz (HIM), der Technischen Universität Darmstadt, der KU Leuven in Belgien, der University of Liverpool im Vereinigten Königreich und des TRIUMF im kanadischen Vancouver unter der Federführung des GSI ist es nun erstmals gelungen, mithilfe von Lasern die optische Anregung von Energieniveaus in der Atomhülle von drei Isotopen des schweren synthetischen Elements Nobelium mit 102 Protonen im Kern detailliert zu vermessen. Atomkerne der schwersten Elemente können in Kernfusionsreaktionen mithilfe von Teilchenbeschleunigern in Raten von wenigen Atomen pro Sekunde hergestellt werden. Die erzielten Resultate werden sehr gut durch theoretische Kernmodelle beschrieben, die etwa eine reduzierte Dichte im Zentrum von schweren Atomkernen vorhersagen. Die Forschungsergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters erschienen.
Vermessung des Energieniveaus in der Elektronenhülle
Atome bestehen aus einem Atomkern und der umgebenden Elektronenhülle. Kernnahe Elektronen durchdringen den Atomkern, sodass sich aus der genauen laserbasierten Vermessung von Energieniveaus in der Hülle die Form und die Größe von Atomkernen bestimmen lassen. Ein Größenunterschied zweier Atomkerne, die sich beispielsweise in der Anzahl der Neutronen unterscheiden, führt zu einer messbaren Verschiebung der Frequenz und entsprechend der Farbe des Laserlichts, mit dem Elektronen im Atom angeregt, also auf höhere Energieniveaus gebracht werden. Bisher konnte diese Methode nur auf Atomkerne leichterer Elemente angewendet werden, die in vergleichsweise hohen Raten hergestellt werden können und zudem eine bekannte Atomstruktur besitzen. Atomkerne von Elementen jenseits von Fermium (Z=100) können in geringen Mengen von wenigen Atomen pro Sekunde in Fusionsreaktionen hergestellt werden und existieren meist nur für wenige Sekunden. Ihre atomare Struktur war daher bisher für eine Untersuchung mit dieser Methode unzugänglich.
Untersuchung von drei Nobelium-Isotopen
Für die aktuellen Experimente wurden Nobelium-Isotope am Geschwindigkeitsfilter SHIP der GSI-Beschleunigeranlage durch die Fusion von Calcium-Ionen mit Blei erzeugt und in einer mit Argongas gefüllten Zelle für die laserspektroskopischen Untersuchungen abgestoppt. Die Ergebnisse bauen auf einem vorangegangenen, ebenfalls bei der GSI durchgeführten Experiment auf, in dem erstmals atomare Übergänge in Nobelium (No) identifiziert wurden. Das vor etwa 60 Jahren entdeckte Element hat die Ordnungszahl 102. Nun konnten mittels Laserspektroskopie die Nobelium-Isotope No-254, No-253 und No-252, bei denen sich die Anzahl der Neutronen jeweils um eins unterscheidet, untersucht werden. Die verfügbaren Ionenraten am Experiment betrugen im Maximum vier Ionen je Sekunde für No-254 und weniger als ein Ion je Sekunde für das Isotop No-252.
Erkenntnisse zu Größe und Form des Nobelium-Atomkerns
Aus den Messungen der Anregungsfrequenzen für die einzelnen Isotope wurde die Verschiebung der Farbe des zur Anregung benötigten Laserlichts bestimmt, während zusätzlich für das Isotop No-253 die sogenannte Hyperfeinstruktur aufgelöst wurde. In Zusammenarbeit mit Gruppen aus dem Helmholtz Institut Jena, der Universität Groningen in den Niederlanden und der University of New South Wales in Sydney in Australien wurden theoretische Berechnungen für atomare Eigenschaften im Nobelium durchgeführt, aus denen die Größe und die Form des Atomkerns abgeleitet werden können. Die Resultate bestätigen, dass die Nobelium-Isotope keine Kugelgestalt haben, sondern oval deformiert sind. Die gemessene Änderung der Größen steht dabei im Einklang mit kernphysikalischen Berechnungen einer Gruppe von theoretischen Wissenschaftlern von der GSI und der Michigan State University in den USA. Diese Berechnungen sagen vorher, dass die schweren Atomkerne nicht massiv sind, sondern eine hohle Struktur durch eine deutlich reduzierte Ladungsdichte im Zentrum des Atomkerns entwickeln.
Mit der laserspektroskopischen Methode können zukünftig weitere schwere Nuklide untersucht werden, um die Änderung der Form und Größe in der Region der schwersten Elemente systematisch zu untersuchen. Solche Messungen sind bisher nur bei der GSI möglich und vertiefen auf einzigartige Weise das Verständnis des Atom- und Kernaufbaus der schwersten Elemente. Die Ergebnisse spielen auch für die zukünftige Anlage FAIR (Facility for Antiproton and Ion Research) eine Rolle, die aktuell bei der GSI gebaut wird. Die gleichen Techniken und Methoden könnten auch am Niedrigenergiezweig des Super-Fragmentseparators von FAIR Anwendung finden.