Masse eines seltsamen Atomkerns mit großer Genauigkeit neu bestimmt

Messung am Mainzer Teilchenbeschleuniger MAMI soll "starke Kraft" verstehen helfen

11.06.2015

Einer internationalen Gruppe von Physikern ist es am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU) gelungen, die Masse eines "seltsamen" Atomkerns mit einer neuartigen Messmethode zu bestimmen, die eine wesentlich größere Genauigkeit als bisherige Methoden aufweist. Am Mainzer Teilchenbeschleuniger MAMI ließ sich der radioaktive Zerfall von künstlich erzeugten, überschweren Wasserstoff-Atomkernen weltweit zum ersten Mal mit einer Kombination mehrerer magnetischer Spektrometer beobachten. Über das genaue Vermessen der Zerfallsprodukte konnte die Masse präzise ermittelt werden. Die Ergebnisse wurden im renommierten Fachmagazin Physical Review Letters veröffentlicht.

Solche Messungen sind besonders hilfreich für das Verständnis der "starken Kraft", die die Atomkerne zusammenhält und so verantwortlich ist für die Beständigkeit der Materie. Auch nach Jahrzehnten der Forschung sind viele grundsätzliche Details dieser Kraft noch nicht verstanden. Atomkerne der uns alltäglich umgebenden Materie bestehen aus zwei Bausteinen, den positiv geladenen Protonen und den elektrisch neutralen Neutronen. Diese wirken auf vielfältige Weise miteinander und untereinander. Hauptsächlich herrscht zwischen ihnen eine ungeheure Anziehungskraft, die für die Bindung der Bausteine zu Atomkernen verantwortlich ist. Die Masse des Atomkerns ist dabei geringer als die Summe der Masse seiner Bestandteile. Die "fehlende Masse" steckt nach Einsteins berühmter Formel E = mc2 in der Energie der Bindungen im Atomkern. Wird die Masse präzise vermessen, lässt sich also die Bindungsenergie bestimmen und es lassen sich Rückschlüsse auf die Natur der starken Kraft ziehen.

Neben den Protonen und Neutronen können prinzipiell auch andere verwandte Teilchen in einem Atomkern gebunden sein, etwa ein sogenanntes Hyperon, das auch als seltsames Neutron bekannt ist. Einen solchen Atomkern nennt man dann einen seltsamen Atomkern oder auch Hyperkern. An Teilchenbeschleunigern wie MAMI ist es möglich, diese künstlich zu erzeugen. Seltsame Teilchen können auf der Erde nur für einen Bruchteil einer Sekunde existieren, aber möglicherweise gibt es große Vorkommen tief im Innern von Neutronensternen, die ebenso von der starken Kraft zusammengehalten werden. Viele offene Fragen zu diesen spektakulären Sternenleichen aus den Tiefen des Alls sind bislang unbeantwortet: Wie groß sind Neutronensterne? Was befindet sich in ihren nicht beobachtbaren Zentren? Wie heiß und dicht ist es dort? Über das Studium der Hyperkerne lassen sich sonst unzugängliche Details der starken Kräfte bestimmen, die nicht nur in seltsamen Atomkernen, sondern auch in Neutronensternen wirken. Somit werden die Fragen angegangen, wie man den Aufbau von winzigen Atomkernen und von gigantischen Neutronensternen verstehen kann und wie beides zusammenhängt.

Am Mainzer Mikrotron haben die Wissenschaftler um Prof. Dr. Josef Pochodzalla und PD Dr. Patrick Achenbach eine sehr schwere Form des gewöhnlichen Elements Wasserstoff erzeugt, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht. Dieser künstlich geschaffene seltsame Atomkern hat eine etwa doppelt so große Masse wie die schwerste stabil in der Natur vorkommende Form des Wasserstoffs, das Deuterium. Um die Masse des seltsamen Wasserstoff-Atomkerns möglichst exakt bestimmen zu können, beobachteten die Kernphysiker den radioaktiven Zerfall des Atomkerns erstmals mit mehreren magnetischen Spektrometern zugleich. Diese Geräte funktionieren hier ähnlich wie Elektronenmikroskope, allerdings in einem viel größeren Maßstab. Sie lenken die Teilchen durch ein starkes Magnetfeld ab und bündeln sie an einer Stelle, an der Teilchendetektoren sie vermessen. Für eine möglichst große Genauigkeit sind die Spektrometer nahezu 15 Meter hoch und wiegen über 200 Tonnen. Weitere Voraussetzungen für eine äußerst präzise Messung sind die große Energie, Schärfe und Stabilität des beschleunigten Teilchenstrahls, wie sie an MAMI erreicht werden.

Als Ergebnis der Mainzer Messung konnte die Bindungsenergie des Hyperons im sehr schweren Wasserstoff-Atomkern bestimmt werden. Sie ist etwa gleich groß wie die gesamte Bindungsenergie des Deuterium-Atomkerns. Für die Wissenschaftler ganz besonders spannend ist die noch unbeantwortete Frage, ob diese Bindungsenergie sich verändert, wenn das Hyperon statt in einen Wasserstoff-Atomkern in einen gleich schweren Helium-Atomkern eingebettet wird. Das würde dann bedeuten, dass die Anziehungskraft der Protonen und Neutronen auf das Hyperon im Atomkern unterschiedlich und die Symmetrie zwischen den Kernbausteinen gebrochen wäre.