Wissenschaftler der Johannes Gutenberg-Universität Mainz erforschen Transportprozess von Sauerstoff im Auge
21.01.2003
Fast nichts geht im Körper ohne Sauerstoff, dem universellen "Treibstoff" aller Lebensvorgänge im Menschen und der meisten anderen Lebewesen. Jedoch unterscheidet sich der Sauerstoffbedarf verschiedener Organe des Körpers stark. Je aktiver der Stoffwechsel eines Organs ist, desto größer ist der Hunger nach Sauerstoff. Den höchsten Bedarf an diesem lebenswichtigen Treibstoff hat die Netzhaut des Auges, die für die Wahrnehmung von Licht und Farben verantwortlich ist. Selbst im Dunkeln laufen viele energieintensive Stoffwechselprozesse ab, so dass eine ununterbrochene Zufuhr von Sauerstoff notwendig ist. Wenn zum Beispiel ein Bergsteiger in großen Höhen unter Sauerstoffmangel leidet, so lässt als erstes die Sehfähigkeit nach, bevor es schließlich auch zu anderen Störungen kommt.
Der eingeatmete Sauerstoff wird von dem Atmungsprotein Hämoglobin über das Blut zum Auge transportiert. Doch war bislang unbekannt, wie der Sauerstoff innerhalb des Auges selbst zu den Mitochondrien, den Kraftwerken der Zellen, gelangt. Wie nun ein Mainzer Forscherteam um die Zoologen Thorsten Burmester und Uwe Wolfrum sowie dem Molekulargenetiker Thomas Hankeln von der Johannes Gutenberg-Universität Mainz (JGU) in der Fachzeitschrift Journal of Biological Chemistry berichten, ist für diesen Transportprozess ein weiteres Atmungsprotein verantwortlich: das erst vor drei Jahren von Burmester und Hankeln entdeckte Neuroglobin, welches entfernt mit dem Hämoglobin verwandt ist.
Neuroglobin wurde zunächst nur im Gehirn gefunden, wo es wahrscheinlich die Nervenzellen vor Schäden durch kurzzeitigen Sauerstoffmangel – wie er zum Beispiel bei einem Schlaganfall auftritt – schützt. In der Netzhaut des Auges jedoch ist die Neuroglobinkonzentration etwa hundertmal höher als im Gehirn. Neuroglobin ist vor allem in den Schichten mit dem größten Energiebedarf angereichert: den Sehzellen (Stäbchen und Zapfen) und den nachfolgenden neuronalen Verschaltungen. Auch wenn die Untersuchungen erst am Anfang stehen, so hoffen die Forscher der Johannes Gutenberg-Universität Mainz, dass diese Entdeckung dazu beitragen wird, einige Erkrankungen des Auges besser zu verstehen.