Ultradünne Glasfaser ermöglicht kontrollierte Kopplung von Licht und Materie
21.05.2010
Physiker der Johannes Gutenberg-Universität Mainz (JGU) haben eine Quantenschnittstelle geschaffen, die eine Brücke zwischen Lichtteilchen und Atomen bildet. Die Schnittstelle besteht aus einer ultradünnen Glasfaser und eignet sich zur Übertragung von Quanteninformationen. Dies ist eine wesentliche Voraussetzung für die Quantenkommunikation, die für die sichere Datenübermittlung mittels Quantenkryptographie angestrebt wird. "Unsere Quantenschnittstelle könnte aber auch für die Realisierung eines Quantencomputers von Nutzen sein", so Prof. Dr. Arno Rauschenbeutel vom Institut für Physik.
Telefon und Internet basieren heutzutage überwiegend auf optischer Datenübertragung mittels Glasfaserkabeln. So gesehen bilden Glasfasernetzwerke das Rückgrat der modernen Informationsgesellschaft. Das durch sie geführte Licht ist nun kein kontinuierlicher Energiestrom. Es besteht, wie Albert Einstein entdeckte, aus kleinsten unteilbaren Energiequanten, den Photonen. Jedes Photon kann dabei ein Bit Information, entsprechend einer Null oder Eins, übertragen. Das ist nicht nur sehr effizient, sondern eröffnet ganz neue Möglichkeiten der Kommunikation, da Photonen als Quantenobjekte gleichzeitig in den Zuständen Null und Eins existieren können. Dies ermöglicht unter anderem die sogenannte Quantenkryptographie, die einen absoluten Abhörschutz verspricht. Um das volle Potenzial der Quantenkommunikation auszuschöpfen, benötigt man jedoch noch die Möglichkeit, die in den einzelnen Photonen kodierte Quanteninformation zu speichern. Photonen selbst eignen sich hierfür nicht, da man sie nicht an einem Ort festhalten kann. Viel besser ist stattdessen, die Quanteninformation auf Atome zu übertragen. Hierfür benötigt man eine Quanten-Schnittstelle zwischen Photonen und Atomen, die idealerweise auch noch mit dem Einsatz in Glasfasernetzwerken kompatibel ist.
Eine Gruppe von Physikern um Prof. Dr. Arno Rauschenbeutel hat nun eine solche glasfaserbasierte Quantenschnittstelle realisiert. Wie das Forscherteam in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters berichtet, ist das Herzstück der Mainzer Arbeiten eine Glasfaser, die durch Erhitzen und Strecken auf etwa ein Hundertstel des Durchmessers eines menschlichen Haars verjüngt wurde. Bemerkenswerterweise ist diese Nanofaser damit dünner als die Wellenlänge des Lichts, das durch sie geführt wird. Eine entscheidende Konsequenz aus dieser Tatsache ist, dass sich das Licht nicht auf das Innere der Nanofaser beschränkt, sondern seitlich aus ihr herausragt. In diesem evaneszenten Feld haben die Wissenschaftler nun Cäsiumatome gefangen, die zuvor durch Bestrahlung mit geeignetem Laserlicht auf eine Temperatur von wenigen Millionstel Grad über dem absoluten Nullpunkt abgekühlt wurden. Die Atome ordnen sich dabei regelmäßig an und schweben 200 Nanometer über der Oberfläche der Nanofaser. So gering diese Entfernung erscheint, sie ist groß genug, um die Atome vor den störenden Einflüssen der Faseroberfläche zu schützen. Gleichzeitig befinden sich die Atome jedoch im evaneszenten Feld und treten so mit den durch die Nanofaser propagierenden Photonen in Wechselwirkung.
Wie die Mainzer Forscher zeigen, ist dieser Prozess so effizient, dass schon wenige tausend Atome reichen sollten, um die Quanteninformation nahezu verlustfrei zwischen Photonen und Atomen zu übertragen. Ein weiteres mögliches Einsatzgebiet der Mainzer Quantenschnittstelle ist die Verschaltung von unterschiedlichen Quantensystemen. So lassen sich zum Beispiel die gefangenen Atome in die Nähe von supraleitenden Quanten-Schaltkreisen bringen und so die vorteilhaften Eigenschaften beider Systeme verbinden. Damit gelänge ein weiterer wichtiger Schritt in Richtung der Realisierung eines Quantencomputers.