Wechselndes Verhältnis chiraler flüchtiger organischer Verbindungen im Amazonas-Regenwald deutet auf Insekten als bedeutende Quelle hin

Überraschende Entdeckung am ATTO-Messturm im brasilianischen Amazonas-Regenwald

27.08.2020

PRESSEMITTEILUNG DES MAX-PLANCK-INSTITUTS FÜR CHEMIE

Wälder wie der Amazonas-Regenwald geben große Mengen biogener flüchtiger organischer Verbindungen (BVOC) an die Atmosphäre ab. Diese Verbindungen beeinflussen die physikalischen und chemischen Eigenschaften der Atmosphäre und auch unser Klima. Die Moleküle reagieren schnell mit OH-Radikalen und Ozon und beeinflussen so die Oxidationskapazität der Atmosphäre, die mit dieser Eigenschaft Schadstoffe wie Kohlenmonoxid und Treibhausgase wie Methan abbaut. Darüber hinaus sind BVOC Vorläufer für sekundäre organische Aerosole, die das Strahlungsbudget der Erde beeinflussen. Viele BVOC wie α-Pinen sind chiral. Das bedeutet, dass sie – vergleichbar mit rechter und linker Hand – in zwei nicht überlagerbaren Spiegelbildformen vorkommen. Wissenschaftler sprechen von Enantiomeren bzw. einer Plus- und einer Minusform. Alle anderen physikalische Eigenschaften wie ihr Siedepunkt, ihre Masse und ihre Abbaurate sind jedoch identisch.

Obwohl Insekten und Pflanzen zwischen Plus- und Minusform beispielsweise bei Pheromonen und Pflanzenabwehrstoffen unterscheiden können, ist dem Mischungsverhältnis der beiden Formen in Wäldern bisher wenig Bedeutung beigemessen worden. Wissenschaftlerinnen und Wissenschaftler vom Max-Planck-Institut für Chemie (MPI-C) in Mainz, der Johannes Gutenberg-Universität Mainz (JGU) und aus Brasilien haben nun jedoch eine interessante Entdeckung gemacht: Entlang des 325 Meter hohen Messturms ATTO – kurz für Amazon Tall Tower Observatory – im Amazonas-Regenwald konnten sie zeigen, dass das vertikale Verhältnis der Enatiomere um den Faktor 10 variiert. Das Team um die Max Planck-Forscherin Nora Zannoni konnte zudem nachweisen, dass die Konzentrationen höhenabhängig sind und im Tagesverlauf sowie im Wechsel von Trocken- zu Regenzeit variieren.

Während plus-α-Pinen zu allen Tageszeiten auf 40 Metern und nachts auf 80 Metern dominiert, überwiegt die Minusform tagsüber ab 80 Metern und höher. Die Wissenschaftlerinnen und Wissenschaftler beobachteten auch, dass die minus-α-Pinen-Konzentration in 80 Metern temperaturabhängt ist, die plus-α-Pinen-Menge jedoch nicht. "Die Fotosyntheserate der Vegetation hängt von der Temperatur und den Spaltöffnungen der Blätter ab. Beide treiben die Emissionen von minus-α-Pinen an. Das bedeutet, dass die Blätter die Hauptemissionsquelle dieses Isomers sind und dass die beiden Isomere auf unterschiedlichen Wegen aus den Blättern freigesetzt werden", erklärt Zannoni, Erstautorin einer Studie, die kürzlich im Fachmagazin Communications Earth & Environment erschienen ist.

Termiten als unbekannte Quelle von plus-α-Pinen in den Baumkronen?

Während der Trockenzeit kehrte sich das chirale Verhältnis der beiden Formen auf einer Höhe von 80 Metern um. "Dies deutet auf eine starke, nicht charakterisierte Quelle von plus-α-Pinen in den Baumkronen hin", ergänzt Dr. Jonathan Williams, wissenschaftlicher Gruppenleiter am Max-Planck-Institut in Mainz und Letztautor der Studie. Die Forscherinnen und Forscher konnten atmosphärische Senken wie den chiral-selektiven Abbau von Pinen durch OH-Radikale und Ozon oder die Ablagerung auf Aerosolen sowie den Einfluss von Windrichtung und Sonnenlicht ausschließen. Daher vermuten sie, dass Stress wie Pflanzenfraß und Emissionen von Termiten für die höheren Werte von plus-α-Pinen verantwortlich sind.

Um den möglichen Einfluss von Insekten zu testen, wurden zusätzlich Messungen über Termitennestern durchgeführt. Die Untersuchungen bestätigten, dass die Emissionen der Termiten das chirale Mengenverhältnis von α-Pinen in der Umgebungsluft umkehren können. Für die Forscherinnen und Forscher steht damit fest, dass der Einfluss von Termiten in Modellen, die die Waldemissionen und die chemischen Signalwege abbilden, berücksichtigt werden muss. Denn mit fortschreitender Entwaldung und Klimaerwärmung werden Termitenpopulationen voraussichtlich erheblich zunehmen.

"Wir wissen auch, dass Pflanzen bei Verletzung und Fraß große Mengen an plus-α-Pinen freisetzen können", fügt Williams hinzu. So konnte man bei Messungen flüchtiger Verbindungen sogar zeigen, wann die Pflanzenfresser am aktivsten waren.

Die Atmosphärenchemiker Zannoni und Williams wollen in Simulationsmodellen nicht nur die Emissionen flüchtiger organischer Verbindungen aus den Baumkronen überdenken. Man müsse vielmehr auch das gesamte Ökosystem berücksichtigen.

Die Forschungsarbeiten wurden vom H2020-Projekt "ULTRACHIRAL" der Europäischen Union mitfinanziert.