Neue PC-Clusteranlage am Institut für Kernphysik für 1,3 Millionen Euro aufgebaut
30.01.2009
Immer weiter dringt die Kernphysik ins Innere der Materie vor und entdeckt neue Teilchen oder hofft, sie zu finden. Die Anlagen dazu werden immer größer und haben in Mainz mit dem Ausbau des Elektronenbeschleunigers MAMI Ende des Jahres 2006 einen Höhepunkt erreicht. Aber nicht nur die experimentellen Einrichtungen nehmen an Größe zu, sondern auch die Computeranlagen, die dazu dienen, solche Experimente zu begleiten. Eine Rechneranlage der Superlative haben die Wissenschaftler am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU) jetzt der Öffentlichkeit vorgestellt: Wilson, so der Name der Maschine, besteht aus 2.240 Prozessoren, die miteinander verknüpft sind und gemeinsam an einer Aufgabe arbeiten. In einer Sekunde können so nicht weniger als vier Billionen Rechenschritte gelöst werden.
"Die neue Rechneranlage bettet sich in idealer Weise in das im Juni 2008 gestartete Forschungszentrum Elementarkräfte und mathematische Grundlagen ein, mit dem die Physik der JGU in die Forschungsinitiative des Landes einbezogen ist", erklärt Ministerialdirigentin Brigitte Klempt, Leiterin der Abteilung Forschung und Technologie im Ministerium für Bildung, Wissenschaft, Jugend und Kultur. "Das Zentrum basiert auf besonderen Stärken der Mainzer Physikforschung, für die es gute Voraussetzungen gibt, auch in der internationalen Konkurrenz erfolgreich zu bestehen", so Klempt.
"Mit dieser außergewöhnlichen Rechenanlage wurden am Institut für Kernphysik die Voraussetzungen geschaffen, um die Experimente am Elektronenbeschleuniger MAMI optimal zu begleiten und zu interpretieren", erklärt der Präsident der Johannes Gutenberg-Universität Mainz, Prof. Dr. Georg Krausch. "Darüber hinaus werden aber auch experimentelle Untersuchungen an anderen Einrichtungen, die sich beispielsweise mit der Existenz neuer Materieformen befassen, künftig durch Rechnungen aus Mainz unterstützt." Die Physiker interessieren sich dabei insbesondere für die Kräfte, die zwischen den kleinsten bekannten Teilchen, den Quarks, wirken. Diese Kräfte entstehen durch sogenannte Gluonen, die zwischen den Quarks ausgetauscht werden.
Wilson wurde im Mai 2008 in Einzelteilen angeliefert und über vier Tage hinweg in zwei Schrankreihen von jeweils 3,60 Meter Länge und zwei Meter Höhe eingebaut. Für die Klimaanlage, deren Leistung 650 haushaltsüblichen Kühlschränken entspricht, musste der Raum zuvor komplett umgebaut werden. Die Kosten für die Anlage betrugen 1,1 Millionen Euro, die im Rahmen des ehemaligen Hochschulbauförderungsgesetzes (HBFG) aus Bundes- und Landesmitteln sowie aus Mitteln der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt bereitgestellt wurden. Weitere 200.000 Euro fielen für den Umbau der Räume und die Kühlanlage an.
Das Interesse der Wissenschaftler gilt dem inneren Aufbau von Protonen und Neutronen, die den Atomkern bilden und die ihrerseits aus den noch kleineren Quarks bestehen. Der starke Zusammenhalt im Innern eines Atomkerns beruht auf der starken Wechselwirkung, eine der vier fundamentalen Kräfte in der Physik. Diese Kraft wirkt durch den Austausch von Gluonen auf die Quarks ein, wobei acht verschiedene Gluonen bekannt sind, die zwischen den Quarks hin- und herwechseln. Zur Beschreibung dieses Kräftespiels dient die Theorie der Quantenchromodynamik (QCD). Wie sich jedoch die unmittelbaren Eigenschaften von Protonen und Neutronen aus der Quantenchromodynamik ableiten lassen, ist noch weitgehend unverstanden. Hier setzen die Arbeiten der Mainzer Kernphysiker an.
"Wir können jetzt mit dem neuen Hochleistungsrechner eine noch recht junge, aber sehr Erfolg versprechende Methode anwenden, um bestimmte Vorgänge im Innern der Atomkerne zu simulieren", erklärt Prof. Dr. Hartmut Wittig vom Institut für Kernphysik der JGU. "Dabei werden die Wechselwirkungen zwischen den Quarks und den Gluonen nicht in den üblichen vier Dimensionen von Raum und Zeit beschrieben, sondern sie werden auf ein Raumzeit-Gitter ähnlich einem Kristallgitter in der Festkörperphysik übertragen." Wittig zufolge ist die Gitter-Quantenchromodynamik eine der erfolgversprechendsten Methoden, um experimentelle Entdeckungen über die Eigenschaften von subatomaren Teilchen theoretisch zu überprüfen und zu ergänzen.